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Abstract

For independent events A and B, the probability P (A & B) is equal to
the product of the corresponding probabilities: P (A&B) = P (A) · P (B).
It is well known that the product f(a, b) = a ·b has the following property:

once
n∑

i=1

P (Ai) = 1 and
m∑

j=1

P (Bj) = 1, the probabilities P (Ai & Bj) =

f(P (Ai), P (Bj)) also add to 1:
n∑

i=1

m∑
j=1

f(P (Ai), P (Bj)) = 1. In 1986,

D. Dubois, H. Prade, and R. Giles proved that the product is the only
continuous function that satisfies this property, i.e., that if, vice versa, this
property holds for some continuous function f(a, b), then this function f
is the product. This result provided an additional explanation of why for
independent events, we multiply probabilities (or, in the Dempster-Shafer
case, masses).

In this paper, we strengthen this result by showing that it holds for
arbitrary (not necessarily continuous) functions f(a, b).

Product is normally used as a combination rule for independent
events. For independent events A and B, the probability P (A &B) is equal
to the product of the corresponding probabilities: P (A&B) = f(P (A), P (B)),
where the combination function is the product f(a, b) = a · b; see, e.g., [6].

Similarly, in Dempster-Shafer theory (see, e.g., [3, 7]) one of the ways to
combine the masses from two independent knowledge bases is to multiply them.

A reasonable property of the combination rule. Due to the additivity
property of probability, if the events A1, . . . , An form a partition of the universal
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set, i.e., if one of these events always occurs and no two can occur at the same

time, then
n∑

i=1

P (Ai) = 1. If the events Ai form a partition and the events Bj

form a partition, then their combinations Ai & Bj also form a partition; indeed:

• since Ai and Bj form a partition, any situation belongs to one of Ai and to
one of Bj , thus, for this situation, the corresponding event Ai &Bj holds;

• similarly, since the events Ai are mutually exclusive and the events Bj are
mutually exclusive, the combinations Ai & Bj are also mutually exclusive.

It is therefore reasonable to expect that if the events Ai form a partition, i.e.,
n∑

i=1

P (Ai) = 1, and if events Bj form a partition, i.e.,
m∑

j=1

P (Bj) = 1, then the

events Ai & Bj should also form a partition, i.e.,
n∑

i=1

m∑
j=1

f(P (Ai), P (Bj)) = 1.

In formal terms, the function f : [0, 1] × [0, 1] → [0, 1] that describes the
combination rule should satisfy the following property:

For every two finite sequences

of non-negative real numbers (a1, . . . , an) and (b1, . . . , bm), (1)

if
n∑

i=1

ai = 1 and
m∑

j=1

bj = 1, then
n∑

i=1

m∑

j=1

f(ai, bj) = 1.

What is known. It is well known that the product function f(a, b) = a · b
satisfies the property (1). It is also known that many other possible combination
functions, e.g., many t-norms that are different from the product (see, e.g.,
[4, 5]), do not satisfy this property.

D. Dubois, H. Prade, and R. Giles proved [2] that among continuous func-
tions f , the product function is the only function that satisfies the above prop-
erty.

This result provides an additional explanation of why for independent events,
we multiply probabilities (or, in the Dempster-Shafer case, masses).

What we will prove. In this paper, we strengthen the result from [2] by
showing that it holds for arbitrary (not necessarily continuous) functions f(a, b).

We also extend this result to the case when we combine more than two
events.

Theorem 1. If a function f : [0, 1] × [0, 1] → [0, 1] satisfies the property (1),
then this function is the product: f(a, b) = a · b for all a and b.
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Case of several events. Let k ≥ 2 be an integer, and let f : [0, 1]k → [0, 1]
be a function of k variables. For such functions, we will consider the following
property:

For every k finite sequences

of non-negative real numbers (a(1)
1 , . . . , a(1)

n1
), . . . , (a(k)

1 , . . . , a(k)
nk

),

if
n1∑

i1=1

a
(1)
i1

= 1 and . . . and
nk∑

ik=1

a
(k)
ik

= 1, (2)

then
n1∑

i1=1

. . .

nk∑

ik=1

f(a(1)
i1

, . . . , a
(k)
ik

) = 1.

Theorem 2. If a function f : [0, 1]k → [0, 1] satisfies the property (2), then
this function is the product: f(a1, . . . , ak) = a1 · . . . · ak for all a1, . . . , ak.

Proof of the Theorems. The proof of Theorems 1 and 2 is based on the
following Lemma:

Lemma. Let a function g : [0, 1] → R+
0

def= [0,∞) satisfy the following prop-
erty:

For every finite sequence of non-negative real numbers (a1, . . . , an),

if
n∑

i=1

ai = 1, then
n∑

i=1

g(ai) = 1. (3)

Then, g(a) = a for every real number a.

Proof of the Lemma. Let us first consider the case when n = 2. In this case,
the condition of the Lemma means that a1 + a2 = 1 implies g(a1) + g(a2) = 1,
i.e., that g(a2) = 1 − g(a1). The equality a1 + a2 = 1 means that a2 = 1 − a1,
so the condition of the Lemma means that

g(1− a1) = 1− g(a1) (4)

for all a1 ∈ [0, 1].
For n = 3, we similarly conclude that g(a1) + g(a2) + g(1 − (a1 + a2)) = 1

for all a1 ≥ 0 and a2 ≥ 0 for which a1 + a2 ≤ 1. Therefore, g(a1) + g(a2) =
1 − g(1 − (a1 + a2)). Due to (4), we have 1 − g(1 − (a1 + a2)) = g(a1 + a2),
so the above property reads g(a1 + a2) = g(a1) + g(a2). It is known (see, e.g.,
[1]) that every function g whose values are non-negative and which satisfies
the above additivity property is linear, i.e., g(a) = k · a for some real number
k. Substituting this expression for g(a) into both sides of the formula (4), we
conclude that k = 1, i.e., that g(a) = a. The Lemma is proven.
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Completing the proof. Let us first prove Theorem 1. Let bj be a sequence

for which
m∑

j=1

bj = 1. For this sequence, let us introduce an auxiliary function

g(a) def=
m∑

j=1

f(a, bj). In terms of this function, the double sum in (1) takes the

form
n∑

i=1

g(ai), so the property (1) takes the form (3).

Since the values of the function f are non-negative, the new auxiliary func-
tion g(a) has non-negative values as well. Due to Lemma, we now conclude that
g(a) = a, i.e., that for every a, we have

m∑

j=1

f(a, bj) = a. (5)

When a = 0, then, from the fact that f(a, b) ≥ 0 for all b, we conclude that
f(a, bj) = 0 for all j – since the only way for a sum of non-negative numbers
to be 0 is when each of these numbers is equal to 0. Thus, we conclude that
f(0, b) = 0 for all b, i.e., that f(a, b) = a · b for a = 0.

When a > 0, then we can divide both sides of the formula (5) by a and get
the following formula:

m∑

j=1

f(a, bj)
a

= 1.

So, for every a > 0, the new auxiliary function g(b) def=
f(a, b)

a
satisfies the

following property:

For every finite sequence of non-negative real numbers (b1, . . . , bm),

if
m∑

j=1

bj = 1, then
m∑

j=1

g(bj) = 1.

This is exactly the property (3), so, due to Lemma, g(b) = b for every real
number b. Since g(a) = f(a, b)/a, we conclude that f(a, b) = a ·b for all a and b.

Theorem 2 can be now proved by induction over k. We have already proven
this theorem for k = 2 – this case corresponds exactly to Theorem 1. Let us
now assume that we have proved this result for k− 1, let us show how to prove
it for k. For that, we first fix k−1 sequences (a(2)

1 , . . . , a
(2)
n2 ), . . . , (a(k)

1 , . . . , a
(k)
nk ),

and consider an auxiliary function g(a) def=
n2∑

i2=1

. . .
nk∑

ik=1

f(a, a
(2)
i2

, . . . , a
(k)
ik

). For

this function, the condition (2) turns into (3), so, due to Lemma, we conclude

that g(a) =
n2∑

i2=1

. . .
nk∑

ik=1

f(a, a
(2)
i2

, . . . , a
(k)
ik

) = a for all a. Thus, for every a, the
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new function f ′(a2, . . . , ak) def= f(a, a2, . . . , ak)a of k − 1 variables satisfies the
following property:

For every k − 1 finite sequences

of non-negative real numbers (a(2)
1 , . . . , a(2)

n2
), . . . , (a(k)

1 , . . . , a(k)
nk

),

if
n2∑

i2=1

a
(2)
i1

= 1 and . . . and
nk∑

ik=1

a
(k)
ik

= 1,

then
n2∑

i2=1

. . .

nk∑

ik=1

f ′(a(2)
i2

, . . . , a
(k)
ik

) = 1.

This is exactly the property (2) for k − 1, so, due to induction assump-
tion, we conclude that f ′(a2, . . . , ak) = a2 · . . . · ak. Since f ′(a2, . . . , ak) =
f(a, a2, . . . , ak)/a, we thus conclude that f(a, a2, . . . , an) = a · f ′(a2, . . . , ak) =
a · a2 · . . . · ak. The induction step is proven, and so is the theorem.
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